CONDENSED PYRIDOPYRIDIMINES. 8*. SYNTHESIS OF NEW DERIVATIVES OF PYRANO[3',4':6,7]PYRIDO[2,3-*d*]PYRIMIDINE

A. Sh. Oganessyan, A. S. Noravyan, and M. Zh. Grigoryan

New substituted 8,8-*dimethyl*-4-*oxopyrano*[3',4':6,7]*pyrido*[2,3-*d*]*pyrimidines have been synthesized from* 2-*amino*-3-*ethoxycarbonyl*-7,7-*dimethylpyrano*[4,3-*b*]*pyridine.*

Keywords: pyranopyridine, pyranopyridopyrimidine, pyridine, pyridopyrimidine, pyridimine, tetrahydropyran, synthesis.

We have previously prepared some derivatives of pyrano[3',4':6,7]pyrido[2,3-d]pyrimidine [2,3]. In a continuing search for biologically active compounds, we have synthesized new examples of this series containing various substituents in positions 2 and 3 of the pyrimidine ring.

3-Substituted 4-oxo-2-thiopyranopyridopyrimidines **1a-c** were synthesized by two methods: A) by boiling ethanolic solutions of 2-amino-3-ethoxycarbonylpyrano[4,3-*b*]pyridine **2** [2] with the isothiocyanates **3a-c** with subsequent heterocyclization of the 2-(N'-R-thioureido) derivatives **4a-c** under the influence of KOH; B) by condensation of pyranopyridine **2** with the isothiocyanates **3a-c** at 130-140°C.

1a, 3a, 4a, 6a,d,g $R = CH_2Ph$; 1b, 3b, 4b, 6b,e,h $R = CH_2CH=CH_2$; 1c, 3c, 4c, 6c,f,i $R = C_6H_4OMe-4$; 5a, 6a–c $R^1 = Et$, X = I; 5b, 6d–f $R^1 = CH_2COPh$, X = Br; 5c, 6g–i $R^1 = CH_2CONH_2$, X = Cl

* For part 7 see [1].

A. L. Mndzhoyan Institute of Fine Organic Chemistry, National Academy of Sciences of the Armenian Republic, Erevan 375014; e-mail: west@msrc.am. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, 1554-1557, October, 2004. Original article submitted May 19, 2000; revision submitted March 5, 2004.

1342

Com-	Empirical formula	Found, % Calculated, %				mp, °C	R_f^*	Yield, %
pound		С	Н	Ν	S			
1a	$C_{19}H_{19}N_3O_2S$	<u>64.5</u> 64.6	<u>5.4</u> 5.4	<u>11.8</u> 11.9	<u>9.1</u> 9.1	310-312	0.61	88 (A) 92 (B)
1b	$C_{15}H_{17}N_{3}O_{2}S$	<u>59.5</u> 59.4	<u>5.6</u> 5.6	$\frac{13.8}{13.9}$	$\frac{10.6}{10.6}$	238-240	0.64	75.5 (A) 89 (B)
1c	$C_{19}H_{19}N_3O_3S$	<u>62.1</u> 61.8	<u>5.7</u> 5.2	$\frac{11.8}{11.4}$	<u>8.1</u> 8.7	300	0.67	87 (A) 90 (B)
4a	$C_{21}H_{25}N_{3}O_{3}S$	<u>63.2</u> 63.1	<u>6.1</u> 6.3	<u>10.6</u> 10.5	$\frac{8.1}{8.0}$	191-192	0.58	50
4b	$C_{17}H_{23}N_3O_3S$	$\frac{58.6}{58.4}$	$\frac{6.5}{6.6}$	$\frac{12.1}{12.0}$	$\frac{9.0}{9.2}$	155-156	0.61	51.2
4c	$C_{21}H_{25}N_{3}O_{4}S$	$\tfrac{61.0}{60.7}$	$\frac{6.0}{6.2}$	$\frac{10.8}{10.1}$	<u>6.7</u> 7.7	157-159	0.63	52
6a	$C_{21}H_{23}N_3O_2S$	<u>63.65</u> 63.5	<u>5.5</u> 5.8	$\frac{10.7}{10.6}$	<u>8.2</u> 8.1	181-183	0.57	92.3
6b	$C_{17}H_{21}N_3O_2S$	$\frac{61.8}{61.6}$	$\frac{6.2}{6.3}$	$\frac{13.0}{12.7}$	<u>9.6</u> 9.8	123-125	0.60	90.3
6c	$C_{21}H_{23}N_3O_3S$	$\frac{63.6}{63.5}$	<u>5.6</u> 5.8	$\frac{11.1}{10.6}$	$\frac{7.9}{8.1}$	175-177	0.64	75.7
6d	C ₂₇ H ₂₅ N ₃ O ₃ S	<u>68.7</u> 68.8	$\frac{5.0}{4.9}$	<u>8.7</u> 8.9	$\frac{7.1}{6.8}$	210-212	0.58	89.3
6e	$C_{23}H_{23}N_3O_3S$	<u>65.7</u> 65.6	<u>5.7</u> 5.9	$\frac{10.3}{10.0}$	<u>6.8</u> 7.6	165-167	0.53	82.5
6f	$C_{27}H_{25}N_3O_4S$	<u>67.1</u> 66.5	<u>4.8</u> 5.1	<u>8.4</u> 8.6	<u>6.8</u> 6.6	194-196	0.57	80
6g	$C_{21}H_{22}N_4O_3S$	<u>61.6</u> 61.5	<u>5.3</u> 5.4	<u>13.5</u> 13.7	<u>7.9</u> 7.8	150-152	0.62	81.5
6h	$C_{17}H_{20}N_4O_3S$	<u>56.5</u> 56.7	<u>5.6</u> 5.6	<u>15.9</u> 15.6	<u>8.4</u> 8.8	162-164	0.63	73.5
6i	$C_{21}H_{22}N_4O_4S$	$\frac{60.0}{59.2}$	$\frac{4.9}{5.2}$	$\frac{13.4}{13.2}$	$\frac{7.3}{7.5}$	208-210	0.67	75

TABLE 1. Characteristics of the Compounds Synthesized, 1, 4, and 6

*Solvent systems: chloroform-benzene-ether, 2:1:1 (1a-c); chloroformether, 1:2 (4a); chloroform-ether-isooctane, 1:2:1 (4b,c]; chloroform-etherheptane, 1:1:1 (6a-i).

It should be noted that the single stage route B gave higher yields of the required products 1.

The corresponding S-alkylsubstituted **6a-i** were obtained as the result of interaction of compounds **1a-c** with the halogeno derivatives **5a-c**.

EXPERIMENTAL

IR spectra of nujol mulls were recorded on a UR-20 spectrometer, ¹H NMR spectra of DMSO-d₆ (**1a-c**, **4a,c**, **6a,c,d**), CDCl₃ (**4b**), and pyridine-d₅ (**6h,i**) solutions were recorded with a Varian Mercury 300 (300 MHz) machine. TLC was carried out on Silufol UV-254 plates with development with iodine vapor.

Characteristics of the compounds synthesized are given in Table 1.

2-(N'-benzylthioureido)-3-ethoxycarbonyl-7,7-dimethyl-7,8-dihydro-5H-pyrano[4,3-b]pyridine (4a). A mixture of **2** (2.5 g, 0.01 mol) and benzyl isothiocyanate **3a** (3.2 g, 0.02 mol) in ethanol (50 ml) was boiled for 10 h. The crystalline product **4a** which separated on cooling was filtered off, washed with ether and recrystallized from ethanol. IR spectrum (thin film), v, cm⁻¹: 1470 (C=S), 1630 (C=N), 1690 (C=O), 3200 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 11.90 (1H, s, HNHet); 8.20 (1H, s, H-4), 7,17 (5H, s, C₆H₅); 6.86 (1H, t, ${}^{3}J = 5.0$, NHR); 4.60 (2H, d, ${}^{3}J = 5.0$, <u>CH</u>₂C₆H₅); 4.53 (2H, s, 2H-5); 4.13 (2H, q, ${}^{3}J = 7.0$, O<u>CH</u>₂CH₃); 2.60 (2H, s, 2H-8); 1.25 (3H, t, ${}^{3}J = 7.0$, OCH₂<u>CH</u>₃); 1.20 (6H, br. s, 2CH₃-7).

2-(N'-Allylthioureido)-3-ethoxycarbonyl-7,7-dimethyl-7,8-dihydro-5H-pyrano[4,3-*b*]pyridine (4b) was obtained from compound **2** (2.5 g, 0.01 mol) and allyl isothiocyanate **3b** (2.0 g, 0.02 mol) by the method described above. IR spectrum (thin film), v, cm⁻¹: 1460 (C=S), 1630 (C=N), 1680 (C=O), 3250 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 11.90 (1H, s, NHHet); 8.20 (1H, s, H-4); 6.93 (1H, t, ³*J* = 5.8, NHR); 6.22-4.95 (3H, m, CH=CH₂); 4.60 (2H, s, 2H-5); 4.23 (2H, q, ³*J* = 6.0, O<u>CH₂CH₃); 4.02 (2H, t, ³*J* = 5.8, NH<u>CH₂); 2.67 (2H, s, 2H-8); 1.28 (3H, t, ³*J* = 6.0, OCH₂<u>CH₃-7).</u></u></u>

3-Ethoxycarbonyl-2-[(N'-4-methoxyphenyl)thioureido]-7,7-dimethyl-7,8-dihydro-5H-pyrano[4,3-*b***]-pyridine (4c)** was obtained from compound **2** (2.5 g, 0.01 mol) and 4-methoxyphenyl isothiocyanate **3c** (3.3 g, 0.01 mol) by the method described above. IR spectrum (thin film), v, cm⁻¹: 1470 (C=S), 1620 (C=N), 1680 (C=O), 3300 (NH). ¹H NMR spectrum, δ , ppm (*J*, Hz): 13.60 (1H, s, NHR); 11.21 (1H, s, NHHet); 8.20 (1H, s, H-4); 7.60-6.85 (4H, m, C₆H₄); 4.75 (2H, s, 2H-5); 4.40 (2H, q, ³*J* = 7.0, O<u>CH</u>₂CH₃); 3.80 (3H, t, ³*J* = 7.0, OCH₃); 2.80 (2H, s, 2H-8); 1.40 (3H, t, ³*J* = 7.0, OCH₂<u>CH</u>₃); 1.20 (6H, s, 2CH₃-7).

3-Substituted 8,8-Dimethyl-4-oxo-2-thioxo-8,9-dihydro-6H-pyrano[3',4':6,7]pyrido[2,3-*d***]pyrimidines 1a-c. A. A mixture of thioureide 4a-c (0.01 mol), KOH (0.02 mol), and 70% ethanol (50 ml) was boiled for 1 h, cooled, and treated with 10% hydrochloric acid until slightly acidic. The crystals of the products 1a-c which precipitated were filtered off, washed with water, dried, and recrystallized from butanol.**

B. A mixture of compound **2** (2.5 g) and an isothiocyanate **3a-c** (3 ml) was maintained at 130-140°C for 7h. The crystals of compound **1a-c** which separated on cooling after treating with ethanol were filtered off, washed with ether, and recrystallized from butanol. IR spectrum (thin film), v, cm⁻¹, **1a-c**: 1460 (C=S), 1670 (C=O). ¹H NMR spectra, δ , ppm (*J*, Hz): **1a**: 8.20 (1-H, s, 5-H); 7.70-7.20 (5H, m, C₆H₅); 6.00 (2H, s, NCH₂); 4.73 (2H, s, 2H-6); 2.98 (2H, s, 2H-9); 1.26 (6H, s, 2CH₃-8); **1b**: 8.50 (1H, s, NH); 8.15 (1H, s, H-5); 6.35-5.15 (3H, m, CH=CH₂); 5.03 (2H, br. s, NCH₂); 4.63 (2H, s, 2H-6); 2.82 (2H, s, 2H-9); 1.23 (6H, s, 2CH₃-8),; **1c**: 13.17 (1H, s, NH); 8.02 (1H, s, H-5); 7.09-6.83 (4H, m, C₆H₄); 4.80 (2H, s, 2H-6); 3.80 (3H, s, OCH₃); 2.80 (2H, s, 2H-9); 1.24 (6H, s, 2CH₃-8).

3-Substituted 2-Ethylthio-8,8-dimethyl-4-oxo-8,9-dihydro-6H-pyrano[3',4':6,7]pyrido[2,3-*d***]pyrimidines 6a-c. Ethyl iodide 5a (1.56 g, 0.01 mol) was added dropwise with stirring to a solution of compound 1a-c (0.01 mol) and KOH (0.56 g, 0.01 mol) in 90% ethanol (20 ml) heated to 40°C. The crystals of the product 6a-c which separated were filtered off, washed with water and ether, and recrystallized from ethanol.** ¹H NMR spectra, δ , ppm (*J*, Hz): 6a: 8.20 (1H, s, H-5); 7.21 (5H, s, C₆H₅); 5.25 (2H, s, <u>CH₂C₆H₅); 4.80 (2H, s,</u> 2H-6); 3.38 (2H, m, SCH₂); 2.81 (2H, s, 2H-9); 1.42 (3H, m, CH₂<u>CH₃</u>); 1.26 (6H, s, 2CH₃-8); 6c: 8.20 (1H, s, H-5); 7.10, 7.20 (4H, two d, ³*J*₁ = ³*J*₂ = 8.8, C₆H₄); 4.81 (2H, s, H-6); 3.90 (3H, s, OCH₃); 3.19 (2H, m, SCH₂); 2.87 (2H, s, 2H-9); 1.40-1.22 (9H, m, CH₂<u>CH₃</u>, 2CH₃-8).

3-Substituted 2-(Benzoylmethyl)thioxo-8,8-dimethyl-4-oxo-8,9-dihydro-6H-pyrano[3',4':6,7]pyrido-[2,3-*d*]pyrimidines 6d-f were obtained from a mixture of compound 1a-c (0.01 mol) and bromoacetophenone 5b (2.0 g, 0.01 mol) by the method used for the synthesis of compounds 6a-c. IR spectrum (thin film), v, cm⁻¹, 6d-f: 1620 (C=N), 1680 (amide C=O), 1700 (C=O). ¹H NMR spectrum, δ , ppm (*J*, Hz), 6d : 8.20-7.40 (11H, m, H-5, CH₂C₆H₅); 6.00 (2H, s, CH₂C₆H₅); 4.80 (4H, s, CH₂-6, SCH₂); 2.82 (2H, s, 2H-9); 1.30 (6H, s, 2CH₃-8).

3-Substituted 2-(Carbamoylmethyl)thioxo-8,8-dimethyl-4-oxo-8,9-dihydro-6H-pyrano[3',4':6,7]pyrido[2,3-*d***]pyrimidines 6g-i.** A mixture of compound **1a-c** (0.01 mol), chloroacetamide **5c** (1.0 g, 0.01 mol), and KOH (0.56 g, 0.01 mol) in 90% ethanol (20 ml) was boiled for 4 h. The crystals of product **6g-i** which formed on cooling the reaction mixture was filtered off, washed with water, and recrystallized from ethanol. IR spectra (thin film), v, cm⁻¹, **6g-i**: 1630 (C=N), 1670, 1680 (amide C=O), 3400 (NH₂). ¹H NMR spectrum, δ , ppm (*J*, Hz), **6h**: 8.33 (2H, br. s, NH₂); 6.20-5.07 (3H, m, CH=CH₂); 4.93 (2H, m, NCH₂); 4.83 (2H, s, 2H-6); 4.43 (2H, s, SCH₂); 3.13 (2H, s, 2H-9); 1.28 (6H, s, 2CH₃-8); **6i**, 8.20 (1H, s, H-5); 7.41-7.00 (6H, m, NH₂, C₆H₄); 4.81 (2H, s, 2H-6); 3.83 (5H, m, S<u>CH₂</u>, O<u>CH₃</u>); 2.90 (2H, s, 2H-9); 1.33 (6H, s, 2CH₃-8). This work was carried in the program of the International Scientific and Technical Union.

REFERENCES

- 1. Arzh. Sh. Oganisyan, A. S. Noravyan, M. Zh. Grigoryan, and Art. Sh. Oganisyan, *Khim. Geterotsikl. Soed.*, 82 (2004).
- 2. A. Sh. Oganisyan, A. S. Noravyan, M. Zh. Grigoryan, and Arzh. Sh. Oganisyan, *Khim. Geterotsikl. Soed.*, 1239 (1999).
- 3. A. Sh. Oganisyan, A. S. Noravyan, and M. Zh. Grigoryan, *Khim. Geterotsikl. Soed.*, 1372 (2003).